Gauge Mediation from Emergent SUSY

Siew-Phang Ng
Bartol Research Institute.

[Goh, SPN & Okada(hep-ph/0511301)] [Goh, SPN & Okada(in progress)]

^{*}Presented at the Santa Fe Summer Workshop on Particle Theory and the LHC, Santa Fe, New Mexico on July 23-29, 2006.

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Introduction

LHC I: Overview

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Turning on in 2007.

LHC I: Overview

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

- Turning on in 2007.
- Herald of a new dawn? Or something completely different...

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Typically in 1 second, we get 10^9 events. Applying the triggers...

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

- Typically in 1 second, we get 10^9 events. Applying the triggers...
 - lacksquare Level 1: $\sim 10^7$ events
 - \triangle Level 2: $\sim 10^5$ events
 - lacksquare Level 3: $\sim 10^2$ events

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Typically in 1 second, we get 10^9 events. Applying the triggers...

 \triangle Level 1: $\sim 10^7$ events

 \triangle Level 2: $\sim 10^5$ events

 \triangle Level 3: $\sim 10^2$ events (recorded)

Introduction LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Typically in 1 second, we get 10^9 events. Applying the triggers...

 \triangle Level 1: $\sim 10^7$ events

lacksquare Level 2: $\sim 10^5$ events

 \triangle Level 3: $\sim 10^2$ events (recorded)

Very real danger of, as it were, "throwing out the baby with the bathwater".

Incidentally, no babies were harmed in the making of this presentation.

Path Ahead

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

- What can we do about it?
 - Hidden valley (Zurek, Strassler)
 - Exotic Higgs decay (Fox, Chang, Weiner)
 - etc.

Path Ahead

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

- What can we do about it?
 - Hidden valley (Zurek, Strassler)
 - Exotic Higgs decay (Fox, Chang, Weiner)
 - etc.
- In short, more than ever, there's a need to question conventional wisdom.
- So what am I trying to sell?

Path Ahead

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

- What can we do about it?
 - Hidden valley (Zurek, Strassler)
 - Exotic Higgs decay (Fox, Chang, Weiner)
 - etc.
- In short, more than ever, there's a need to question conventional wisdom.
- So what am I trying to sell? Gauge mediation from emergent susy, of course. A new approach to susy model building.

Typical Gauge Mediation

Introduction

LHC

Operation

Path Ahead

Gmsb

Big Picture

Setup

SUSY breaking

Stabilization

- Setup and properties
 - lacktriangle Parameters: F, M and $\Lambda = F/M$
 - Dynamical Susy Breaking
 - lacktriangle Phenomenological viability constrains F, M and

$$\Lambda = F/M$$

- Gravitino LSP
- Bounds from cosmology
- Problems with DSB.
- How is GMES different?

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Big Picture

Introduction

Big Picture

GMES CFT

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Based on the paradigm of Susy without Susy. [Goh, Luty & SPN(hep-th/0309103)]

Based on the paradigm of Susy without Susy. [Goh, Luty & SPN(hep-th/0309103)]

Susy is an ACCIDENTAL symmetry! (More on this later)

Introduction

Big Picture

GMES CFT

AdS dual

Setup

SUSY breaking

Stabilization

Introduction

Big Picture

GMES CFT

AdS dual

Setup

SUSY breaking

Stabilization

- Based on the paradigm of Susy without Susy. [Goh, Luty & SPN(hep-th/0309103)]
- Susy is an ACCIDENTAL symmetry! (More on this later)
- Original realization does not solve the Susy flavor problem.

Introduction

Big Picture

GMES

CFT AdS dual

Setup

SUSY breaking

Stabilization

- Based on the paradigm of Susy without Susy. [Goh, Luty & SPN(hep-th/0309103)]
- Susy is an ACCIDENTAL symmetry! (More on this later)
- Original realization does not solve the Susy flavor problem.
- So we decided to use gauge mediation.

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Key assumption: We live in a superconformal basin.

Key assumption: We live in a superconformal basin.

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Parameter Space

- Features
 - Start at the edge

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

- Features
 - Start at the edge
 - Flows towards the fixed point

Introduction

Big Picture

GMES

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Features

- Start at the edge
- Flows towards the fixed point
- Flow terminated before f.p.

Introduction

Big Picture

GMES

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Features

- Start at the edge
- Flows towards the fixed point
- Flow terminated before f.p.
- Subtleties
 - Susy breaking operators
 - Anomalous dimensions
 - Fundamental vs Emergent fields
 - **Emergent Susy**

Introduction

Big Picture

GMES

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Features

- Start at the edge
- Flows towards the fixed point
- Flow terminated before f.p.
- Subtleties
 - Susy breaking operators
 - Anomalous dimensions
 - Fundamental vs Emergent fields
 - **Emergent Susy**

For more insights, use AdS-CFT dictionary.

Key assumption: There are no light bulk scalars.

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

Key assumption: There are no light bulk scalars.

- Features
 - UV brane

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

- Features
 - UV brane
 - Bulk

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

- Features
 - UV brane
 - Bulk
 - ▲ IR brane

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

- Features
 - UV brane
 - Bulk
 - ▲ IR brane
- Subtleties
 - Susy breaking transmission
 - Bulk scalar masses
 - Bulk vs IR-localized fields
 - Emergent Susy

Introduction

Big Picture

GMES

CFT

AdS dual

Setup

SUSY breaking

Stabilization

Conclusions

- **Features**
 - **UV** brane
 - Bulk
 - IR brane
- Subtleties
 - Susy breaking transmission
 - Bulk scalar masses
 - Bulk vs IR-localized fields
 - **Emergent Susy**

Much easier to construct an explicit example on the AdS side.

Introduction

Big Picture

Setup

Explicit Model

EoM Solutions

SUSY breaking

Stabilization

Conclusions

Setup

Setup I: Explicit Model

Introduction

Big Picture

Setup

Explicit Model

EoM Solutions

SUSY breaking

Stabilization

Conclusions

Randall-Sundrum model on a $S^1/Z_2 imes Z_2$ orbifold

$$ds^{2} = e^{-2\sigma(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}.$$

Action is given by

$$S = \frac{M_5^3}{k} \int d^4x \int d^4\theta (\omega^{\dagger}\omega - \varphi^{\dagger}\varphi) + \int d^4x \int_0^{\ell} dy L_{hyp},$$

where
$$\omega = e^{-k\ell} + \cdots + \theta^2 F_{\omega}$$
 and $\varphi = 1 + \theta^2 F_{\varphi}$.

Hypermultiplet action is

$$L_{hyp} = \int d^{4}\theta e^{-2\sigma} (\Phi^{\dagger}\Phi + \tilde{\Phi}^{\dagger}\tilde{\Phi}) + \left[\int d^{2}\theta e^{-3\sigma} \left(\frac{1}{2}\tilde{\Phi}\tilde{\partial}_{y}\Phi + c\sigma'\tilde{\Phi}\Phi \right) + \text{h.c.} \right] - \delta(y)U(\Phi, \tilde{\Phi}, F, \tilde{F})$$
$$+\delta(y - \ell)\omega^{3} \left[\int d^{4}\theta W(\Phi, \tilde{\Phi}) + \text{h.c.} \right]$$

Setup II: EoM Solutions

Introduction

Big Picture

Setup

Explicit Model

EoM Solutions

SUSY breaking

Stabilization

Conclusions

General solution (for $0 < y < \ell$) is

$$F = F_0 e^{-(c - \frac{3}{2})\sigma}$$

$$\tilde{F} = \tilde{F}_0 \frac{\sigma'}{k} e^{(c + \frac{3}{2})\sigma}$$

$$\Phi = \Phi_0 e^{-(c - \frac{3}{2})\sigma} - \frac{\tilde{F}_0^{\dagger}}{(2c + 1)k} e^{(c + \frac{5}{2})\sigma}$$

$$\tilde{\Phi} = \tilde{\Phi}_0 e^{(c + \frac{3}{2})\sigma} - \frac{F_0^{\dagger}}{(2c - 1)k} e^{-(c - \frac{5}{2})\sigma}$$

- The prefactors are determined from the junction conditions.
- Digression: AdS-CFT dictionary

$$\dim(O_{\Phi,\tilde{\Phi}}) = d, \tilde{d} = 2 + |c \pm \frac{1}{2}|$$

Introduction

Big Picture

Setup

SUSY breaking

Mechanisms

Gauge Mediation

Stabilization

Conclusions

SUSY breaking

SUSY breaking I: Various Mechanisms

Introduction

Big Picture

Setup

SUSY breaking

Mechanisms

Gauge Mediation

Stabilization

- 5-d gravity loop contribution is $m_{\rm gravity} \sim \omega^2$. [Gregoire et al(hep-th/0411216)]
- Effective 4-d Lagrangian that characterizes the soft SUSY breaking masses from the various mechanisms

$$L_{soft} = -V_{\text{eff},\omega} + \int d^4\theta \omega^{\dagger} \omega \left[1 + (1 + \Phi_{IR}^{\dagger} \Phi_{IR}) \right]$$
$$(Q^{\dagger}Q + X^{\dagger}X + \bar{X}^{\dagger}\bar{X}) + \int d^2\theta \omega^3 \Phi \bar{X}X + \text{h.c.}$$

- For the models of interest, scale of anomaly mediation is $m_{
 m anomaly} \sim rac{F_\omega}{\omega} = rac{1}{\omega} rac{\partial V_{
 m eff},\omega}{\partial \omega} \sim \Lambda_{
 m IR} \omega^{d-5}$. [Luty & Sundrum(hep-th/0012158)]
- After canonical normalization, direct mediation contributes $m_{
 m direct}^2 \sim F_{
 m IR}^\dagger F_{
 m IR}$. Generally, flavor non-diagonal. [Goh, Luty & SPN(hep-th/0309103)]
- What about gauge mediation?

SUSY breaking II: Gauge Mediation

Introduction

Big Picture

Setup

SUSY breaking

Mechanisms

Gauge Mediation

Stabilization

Conclusions

Mass matrix of the scalar messengers is completely specified.

$$m_{\text{messenger}}^2 = \begin{pmatrix} \omega^{\dagger} \omega |\Phi_{\text{IR}}|^2 + |F_{\text{IR}}|^2 & \omega F_{\text{IR}} \\ \omega^{\dagger} F_{\text{IR}}^{\dagger} & \omega^{\dagger} \omega |\Phi_{\text{IR}}|^2 + |F_{\text{IR}}|^2 \end{pmatrix}$$

- Scale of gauge mediation is $m_{
 m gauge} \sim rac{F_{
 m IR}}{\Phi_{
 m IR}}$ subject to certain constraints.
- For a particular class of theories, we have

$$m_{
m soft} \sim \left\{ egin{array}{ll} rac{F_{
m IR}}{\Phi_{
m IR}} & \sim \Lambda_{
m IR} \omega^{rac{d-5}{3}} & gauge & \checkmark \Rightarrow d > 5 \ F_{
m IR} & \sim \Lambda_{
m IR} \omega^{rac{2(d-5)}{3}} & direct & subdom. \ rac{F_{\omega}}{\omega} & \sim \Lambda_{IR} \omega^{d-5} & anomaly & subdom. \ & \sim \Lambda_{IR} \omega & gravity & subdom? \end{array}
ight.$$

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials

Phenomenology

Conclusions

Stabilization

Stabilization I: Brane Potentials

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials

Phenomenology

Conclusions

For gauge mediation to dominate, the following is required: (+,+) orbifold parity, d>5 $(c<-\frac{5}{2})$ and the potentials

$$U = b(\Phi_{\text{UV}} + \Phi_{\text{UV}}^{\dagger}), \qquad W = a\Phi_{\text{IR}}^{3}$$

Effective potential is

$$V_{\text{eff}} = \frac{3b}{4} \Phi_{\text{IR}} \omega^{d-1} + \dots = -A\omega^{4\frac{d-2}{3}} + \dots$$

where A > 0.

Stabilization I: Brane Potentials

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials

Phenomenology

Conclusions

For gauge mediation to dominate, the following is required: (+,+) orbifold parity, d>5 $(c<-\frac{5}{2})$ and the potentials

$$U = b(\Phi_{\text{UV}} + \Phi_{\text{UV}}^{\dagger}), \qquad W = a\Phi_{\text{IR}}^{3}$$

Effective potential is

$$V_{\text{eff}} = \frac{3b}{4} \Phi_{\text{IR}} \omega^{d-1} + \dots = -A\omega^{4\frac{d-2}{3}} + \dots$$

where A > 0.

Introduce $\Psi:(+,+)$ orbifold parity, c>0 (good only for stabilization) and potentials

$$U = b' \Psi_{\text{UV}}^2 + b_2' F + \text{h.c.}, \qquad W = a' \Psi_{\text{IR}}^2$$

- Hence for stabilization, $d' \gtrsim \frac{2d+5}{3}$.
- Checked SUSY breaking.

Stabilization I: Brane Potentials

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials

Phenomenology

Conclusions

For gauge mediation to dominate, the following is required: (+,+) orbifold parity, d>5 $(c<-\frac{5}{2})$ and the potentials

$$U = b(\Phi_{\text{UV}} + \Phi_{\text{UV}}^{\dagger}), \qquad W = a\Phi_{\text{IR}}^{3}$$

Effective potential is

$$V_{\text{eff}} = \frac{3b}{4} \Phi_{\text{IR}} \omega^{d-1} + \dots = -A\omega^{4\frac{d-2}{3}} + \dots$$

where A > 0.

Introduce $\Psi:(+,+)$ orbifold parity, c>0 (good only for stabilization) and potentials

$$U = b' \Psi_{\text{UV}}^2 + b_2' F + \text{h.c.}, \qquad W = a' \Psi_{\text{IR}}^2$$

- Hence for stabilization, $d' \gtrsim \frac{2d+5}{3}$.
- Checked SUSY breaking. ✓

Stabilization II: Phenomenology

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Brane Potentials

Phenomenology

Conclusions

Combining FCNC and Casimir constraints, and taking $m_{
m soft} \sim 100$ GeV and $M_5 = 2.4 \times 10^{18}$ GeV,

$$6.16 \le d \le 6.5$$

 $6.2 \times 10^8 \text{GeV} \ge \Lambda_{\text{IR}} \ge 1.0 \times 10^8 \text{GeV}$
 $1.6 \times 10^{-3} \le \frac{m_{\text{direct}}}{m_{\text{gauge}}} \le 10^{-2}$

- Phenomenological Differences with conventional GMSB
 - A Heavy Gravitino
 - Non-negligible FCNC
 - Presence of radion
 - **A** . . .
- Work In Progress.

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Final Word

Final Word

Introduction

Big Picture

Setup

SUSY breaking

Stabilization

Conclusions

Final Word

- GMES is interesting as
 - An Alternative to GMSB
 - No need for traditional DSB
 - Averts gravitino constraints
 - Different phenomenology
 - Part of Susy w.o. Susy
 - No Susy flavor problem
 - Another class of realizations

